Bäcklund–Darboux Transformation for Non-Isospectral Canonical System and Riemann–Hilbert Problem

نویسندگان

  • Alexander SAKHNOVICH
  • A. Sakhnovich
چکیده

A GBDT version of the Bäcklund–Darboux transformation is constructed for a non-isospectral canonical system, which plays essential role in the theory of random matrix models. The corresponding Riemann–Hilbert problem is treated and some explicit formulas are obtained. A related inverse problem is formulated and solved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete canonical system and non-Abelian Toda lattice: Bäcklund-Darboux transformation and Weyl functions

A version of the iterated Bäcklund-Darboux transformation, where Darboux matrix takes a form of the tranfer matrix function from the system theory, is introduced for the discrete canonical system and nonAbelian Toda lattice. Solutions are constructed and several spectral results are obtained.

متن کامل

Discrete canonical system and non-Abelian Toda lattice: Bäcklund-Darboux transformation, Weyl functions, and explicit solutions

A version of the iterated Bäcklund-Darboux transformation, where Darboux matrix takes a form of the transfer matrix function from the system theory, is constructed for the discrete canonical system and Non-Abelian Toda lattice. Results on the transformations of the Weyl functions, insertion of the eigenvalues, and construction of the bound states are obtained. A wide class of the explicit solut...

متن کامل

Darboux Transformation for the Non-isospectral AKNS Hierarchy and Its Asymptotic Property

In this article, the Darboux transformation for the non-isospectral AKNS hierarchy is constructed. We show that the Darboux transformation for the non-isospectral AKNS hierarchy is not an auto-Bäcklund transformation, because the integral constants of the hierarchy will be changed after the transformation. The transform rule of the integral constants will be also derived. By this means, the sol...

متن کامل

Riemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type

We study the Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion and with monotonically increasing initial data using the Riemann-Hilbert (RH) approach. The solution of the Cauchy problem, in the zero dispersion limit, is obtained using the steepest descent method for oscillatory Riemann-Hilbert problems. The asymptotic solution is completely described by a scalar func...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007